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Summary: The cationic iminoacyl species Cp2Zr(q2-C,N- 
C(=N'Bu)CHs)+, generated in situ from Cp2Zr(q2-C,N- 
C(=N'Bu)CHs)(CHs) and B(C@S)3, inserts alkynes and 
alkenes to yield metallacycles which can be hydrolyzed to 
ketones in high overall yield. 

Neutral q2-(iminoacyl) complexes of early transition 
metals exhibit a variety of interesting reactions including 
isocyanide deinsertion, 1,bhydrogen shifts, and inter-/ 
intramolecular addition and coupling reactions.' However, 
reactions with nonpolar unsaturated substrates have not 
been reported.2 As a part of our effort to develop synthetic 
applications of CpaZr(R) (L)+ c~mplexes,~*~ we recently 
reported that Cp2Zr(q2-C,0-C{--V)R)(L)+ q2-acyl com- 
plexes undergo alternating multiple insertion of alkynes 
and carbon mono~ide.~ This result, and earlier insertion 
chemistry developed for Cp2Zr(q2-pyridyl)(L)+ complexes+ 
suggested that analogous cationic q2-(iminoacyl) species 
Cp2Zr(q2-C,N-C(=NRjR)+ would exhibit enhanced reac- 
tivity. Here we report that Cp2Zr(~-C,N-Cr=NtBuJCHs)+ 
species undergo facile insertion reactions with alkynes and 
alkenes which offer an efficient method for the regiose- 
lective acetylation of these substrates. 

CpzZr(CHs)n reacts irreversibly with tert-butyl isocy- 
anide (23 "C, CH2C12, 5 min) to afford the air-stable q2- 
(iminoacyl) complex Cp2Zr(q2-C,N-C(=NtBu)CHg) (CH3) 
(1, loo%, eq 1h6 The low-field Zr-C{=NtBu) 13C NMR 

2 

3 

resonance (6 235) and the IR Y+N absorbance at 1639.6 
cm-l for 1 are consistent with the q2-coordination mode.lJ 
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The 1H NMR spectrum of 1 in toluene-da exhibits pairs 
of Cp, 'Bu, and CH3 resonances, indicating that 1 exists 
as a 1/1 mixture of "N-inside" and "N-outside" isomers 
(resulting from different orientation of the q2-(iminoacyl) 
f~nctionality)~j in this solvent. However, these resonances 
appear as singlets in CD2C12, indicating that isomer 
interconversion is rapid in this solvent. 

Several methods were explored for conversion of 1 into 
cationic Cp2Zr(q2-C,N-C(=NtBu)CH3)+ species. In an 
initial approach, CB11H12- was used as a weakly coordi- 
nating anion.8 Complex 1 reacts with AgCBllHl2 (23 OC, 
toluene, 5 min) via Ag+ oxidative Zr-CH3 bond cleavage 

eq 1). Spectroscopic data for 2 establish the q2-(iminoacyl) 
structure (l3C NMR 6 229.3, Zr-C{=NtBuJ-; IR VC-N 1670.6 
cm-1).197*9 The llB NMR spectrum of 2 consists of three 
doublets at 6 -7.35 (lB, J = 117 Hz), -13.08 (5B, J = 135 
Hz), and -15.37 (5B, J = 154 Hz). The lowered JBH value 
for the unique B indicates that the CB11H12- anion is weakly 
coordinated to Zr via a Zr-H-B interaction involving the 
B-H para to the carborane C.8b The p-H resonance is not 
observed in the lH NMR spectrum; presumably, it is 
broadened by anion exchange.8 The IR spectrum of 1 
(KBr pellet) exhibits three VBH bands (2560, 2283,2204 
cm-l), consistent with the loss of symmetry due to 
coordination of CB11H12- to Zr.h Initial experiments 
indicated that 2 is quite reactive with alkynes and alkenes 
due to the lability of the CB11H12- anion. However, because 

to afford CpzZr(~C~-C{=NtBu)CH3)(CB11H12) (2,100%, 
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2 is thermally sensitive, air sensitive, and unstable in 
chlorinated solvents, a more robust reagent was sought. 

A more stable cationic q2-(iminoacyl) complex, [Cpr 
Zr(12-C,N-C(=NtBu)CH3)l [CH3B(C@s)31 (3) , was pre- 
pared by CH3- abstraction from 1 using B(C@5)3 (23 OC, 
CH2C12, 2 min, 100%).l0 In contrast to 2, complex 3 is 
stable at ambient temperature and in chlorinated solvents. 
Moreover, 3 is stable in air for at least 10 min at ambient 
temperature. The q2-(iminoacyl) coordination mode is 
clearly evident from the spectroscopic data (l3C NMR 6 
233, ZrC(=NtBu)-; IR V+N 1646.2 cm-9, and NMR data 
are consistent with a noncoordinated MeB(C@& anion." 

The reactivity of 3 (generated in situ from 1 and 
B(C@5)3) with alkynes was explored (Scheme I). 3 reacts 
rapidly with terminal alkynes such as 1-pentyne and 
(trimethylsily1)acetylene (23 OC, CH2C12, 5 min, 100%) 
via insertion into the Zr-C(iminoacy1) bond to afford the 
five-membered unsaturated metallacycles 4 and 5, re- 
spectively. Products resulting from alkyne C-H bond 
activation or multiple alkyne insertion are not observed. 
The 13C NMR spectra of 4 and 5 exhibit low-field Zr-C(R) 
= resonances (6 239.5 and 253.8, respectively; confirmed 
by DEPT for 4), indicating that the alkyne substituent is 
a to Zr. The -C=NtBu resonance appears at 6 181.5 and 
178.6 for 4 and 5, respectively. These values are downfield 
from the values of organic imine analogues12and establish 
that the imine N is coordinated to Zr. The IR VC-N values 
(4,1640.6; 5,1642.3 cm-l) are also consistent with the imine 
N-coordination. The reaction of 3 with the internal alkyne 
1-(trimethylsily1)propyne (23 OC, CH2C12, 30-45 min) 
quantitatively affords the unsaturated metallacycle 6, in 
which the -SiMes substituent is a to Zr. The 13C and IR 

(10) (a) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. SOC. 1991, 
113,3623. (b) Yang, X.; Stern, C. L.; Marks, T. J. Angew. Chem., Znt. Ed. 
Engl. 1992,31,1375. 
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for 4-9; coordination of the anion to Zr in the latter complexes is very 
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data for 6 are similar to data for 4 and 5 and establish the 
chelated structure. The alkyne insertion regiochemistry 
was confirmed by hydrolysis (vide infra). 

Complex 3 also reacts rapidly and quantitatively with 
olefins via insertion into the Zr-C(iminoacy1) bond 
(Scheme I). Reaction of 3 with ethylene (1 atm, <23 "C, 
CHzClz, <1 min) cleanly affords metallacycle 7. Reaction 
of 3 with vinyltrimethylsilane (23 "C, CH2C12, <5 min) 
proceeds via 2,l-insertion to afford metallacycle 8, in which 
the -SiMe3 substituent is a to Zr. Hydrolysis of 8 affords 
4-(trimethylsilyl)butan-2-one and unambiguously estab- 
lishes the insertion regiochemistry. 3 reacts with propene 
(23 "C, CH2C12, <5 min) via 1,2-insertion to afford 
metallacycle 9, in which the -Me substituent is ,9 to Zr. 
Spectroscopic data for 7-9 are similar to data for unsat- 
urated analogues 4-6 and are consistent with chelated 
structures. 

The high reactivity of 3 and its ease of generation from 
air-stable 1, make it an attractive reagent for acetylation 
of alkynes and alkenes. Thus, sequential addition of 
solutions of B(C@5)3 and the unsaturated substrate to 1 
using Schlenk techniques, followed by hydrolysis, extrac- 
tion, and purification affords ketones in excellent yields 
(84-92%, Scheme II).13 Thus, in situ generated 3 reacts 
with (trimethylsily1)propyne and a proton source to afford 
4-(trimethylsilyl)-3-methylbut-3-en-2-one (10,85% 1. The 
absence of coupling between the vinyl-H and vinyl-CHs 

(13) Example experimental procedure: Tosolid 1 (500 mg, 1.49 "01) 
waeaddedasolutionofB(C&)~(770mg, l.Wmmol)inCH&1~(-6mL) 
under Nzwithstirringatambient temperature. Afterthecolorlesssolution 
wae stirred for 6 min, a solution of (trimethylsiiy1)acetylene (200 mg, 2.04 
"01) in CH&& (-6 mL) waa addedmultiq ina bright yellow solution. 
The reaction wae stirred for an additional 46 min. The volatilea were 
removed on a rotary evaporator, and the reaidue waa diesolved in MeOH 
(-6 mL). Ha0 (10 mL) wae added and the reaction mixture stirred for 
15 min, yielding a colorleas heterogenous (gel-like) mWure. The gel wae 
extracted with CHIC12 (3 X 7 mL). The organic extract WBB washed with 
saturated NaCl solution (1 X 10 mL). T h e  aqueous phase waa extracted 
with CHgCla (2 X 6 mL). The combined organic extracts were condensed 
to -0.6 mL on a rotary evaporator and the reaidue column chromato- 
graphed on alumina using hexane and then hexane/CH& (1:l) to afford 
10 (Rf (CHZCla) 0.65) ae a pale yellow oil (yield 199 mg, 865%). 
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compounds 10-13 clearly demonstrate the synthetic 
potential of 3 as a novel acetyl anion equivalent for the 
acetylation of alkynes and alkenes.”-l6 The mild reaction 
conditions, moderate air stability of the reagenta involved, 
and the use of normal alkynes/alkenes as electrophiles are 
especially noteworthy. For comparison, most reactions 
involving acyl anion equivalents reported to date use more 
vigorous reaction conditions, highly air-sensitive/pyro- 
phoric strong bases, and/or elaborate workup proce- 
dure~.~sJ6 Furthermore, these reactions generally utilize 
electrophiles other than alkynes and alkenes. In the 
present study, a single iminoacyl complex (1) was used, 
and the intermediate cationic azazirconacycles were hy- 
drolyzed to afford ketones. Presumably, the use of other 
iminoacyl complexes, and other electrophilic Zr-C cleavage 
reactions, could provide access to a wider variety of 
producta.17 Work is currently underway to broaden the 
scope of this chemistry. 
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in the ‘H NMR spectrum of 10 establishes the assigned 
regiochemistry. The (Ebalkenyl geometry for 10 is 
assigned by 2D-NOESY experiments and by analogy to 
11 and 12 (vide infra) and the known cis insertion chemistry 
of Cp2Zr(pyridyl)+ and related complexes.= Similar 
reactions of in situ generated 3 with (trimethylsily1)- 
acetylene and phenylacetylene afford (E)-alkenyl ketones 
11 and 12, respectively. The ‘H NMR spectra for 11 and 
12 exhibit large coupling (J = 16-20 Hz) between the vinyl- 
H s  consistent with the assigned E geometry. Ketone 13 
was isolated after hydrolysis of the reaction of in situ 
generated 3 and styrene. 

The enhanced reactivity of 3 relative to neutral early 
transition metal iminoacyl complexes is ascribed to high 
Lewis acidity of the cationic Zr(1V) center which promotes 
coordination and activation of unsaturated substrates. The 
regioselectivity observed in these reactions is similar to 
that observed for analogous reactions of Cp2Zr(v2-py- 
ridyl)(L)+ and CpzZr(q2-acyl)(L)+ complexes and has been 
rationalized on the basis of steric/electronic effects.-The 
high yield syntheses of unsaturated and saturated carbonyl 
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